0=x^2+16x-64

Simple and best practice solution for 0=x^2+16x-64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=x^2+16x-64 equation:



0=x^2+16x-64
We move all terms to the left:
0-(x^2+16x-64)=0
We add all the numbers together, and all the variables
-(x^2+16x-64)=0
We get rid of parentheses
-x^2-16x+64=0
We add all the numbers together, and all the variables
-1x^2-16x+64=0
a = -1; b = -16; c = +64;
Δ = b2-4ac
Δ = -162-4·(-1)·64
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{2}}{2*-1}=\frac{16-16\sqrt{2}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{2}}{2*-1}=\frac{16+16\sqrt{2}}{-2} $

See similar equations:

| 18x2+1=6x | | -3*(-x+-5)+2=5 | | x/3-3/4=2x+3/12 | | 6(x-3)/2=6(x+1)/10 | | -5a+24+7a=4a-8a | | -2(3t-5)+4t=3t-4 | | 4n=7n/10+165 | | p/10+87=3p | | -5(2t-4)+7t=2t-9 | | 7(y-8)+24=8(y-6) | | 4y+8+y=19 | | (15)t+(21-12)=15t9 | | -4v^2-20v-25=0 | | 5x-4(3x-1(6x+1)=5(3x+12)-1 | | 20/100=x/60 | | (1/2)t+4/5=3/5-t | | 2(6q-5)=4q | | (-2x-3/3)+4=7 | | 5q^2-8-4q=0 | | (4x+3)°=(x-8)° | | 50x+10=30x+5 | | 4(z=5)=32 | | -5v^2-24v+36=0 | | F(n)=10n | | 50x+10=10x-6 | | 3x^2−6x−2=0 | | 8e-5e+2=14 | | 40x+4=10x+2 | | X+20+2x=-10-2x-15= | | 30x+4=10x-2 | | 2p+7=-5p+20 | | 20x+4=10x-2 |

Equations solver categories